Effective Material Property Extraction of a Metamaterial by Taking Boundary Effects into Account at Te/tm Polarized Incidence
نویسندگان
چکیده
In this paper, we present the extraction for effective material parameters for a metamaterial from TE or TM waveguide measurements with generalized sheet transition conditions (GSTCs) used to provide electric and magnetic surface susceptibilities that approximate boundary effects between the metamaterial and air. The retrieval algorithm determines the effective material properties via scattering data obtained from the metamaterial in a waveguide. The effective refractive index is expressed as a function of S-parameters for two samples of different length. The effective wave impedance is given in terms of S-parameters and the refractive index, assuming that GSTCs account for the boundary effects. The effective permittivity and permeability can then be determined through the refractive index and wave impedance. By use of S-parameters generated by commercial three-dimensional (3-D) full-wave simulation software our present equations are tested for two cases of metamaterials: magneto-dielectric (εr = μr) and dielectric (TiO2) particles. We also conduct S-parameter measurements on dielectric cubes with an S-band (WR-284) waveguide to compute the effective material properties. Furthermore, our results are compared to those derived from another retrieval method used in the literature, which does not account for boundary effects. Received 29 July 2011, Accepted 22 September 2011, Scheduled 2 November 2011 * Corresponding author: Sung Kim ([email protected]).
منابع مشابه
Transmission and Reflection Characteristics of a Concrete Block Wall Illuminated by a TM-polarized Obliquely incident wave
Typically, many of the modern buildings have concrete walls constructed from cinder block walls, that have periodic nature in their relative dielectric constant. This periodic nature excites higher-order Floquet harmonic modes at microwave frequencies, which leads to the propagation of scattered waves along with non-specular directions. Periodic structures exhibit different behaviors when illum...
متن کاملDesign, Fabrication and Measurement of Two-Layered Quadruple-Band Microwave Metamaterial Absorber
The design, simulation, fabrication, and measurement of two structures of metamaterial absorbers (MA) is investigated at microwave frequency in this paper. By stacking of one layer structure on the top of each other, a two-layered structure is generated. The unit cell at each layer consisting of two sets of various circular and square patches are designed so that the structure exhibit quad band...
متن کاملMetamaterials for enhanced polarization conversion in plasmonic excitation.
Surface plasmons efficient excitation is typically expected to be strongly constrained to transverse magnetic (TM) polarized incidence, as demonstrated so far, due to its intrinsic TM polarization. We report a designer plasmonic metamaterial that is engineered in a deep subwavelength scale in visible optical frequencies to overcome this fundamental limitation, and allows transverse electric (TE...
متن کاملDesign of Photonic Crystal Polarization Splitter on InP Substrate
In this article, we suggested a novel design of polarization splitter based on coupler waveguide on InP substrate at 1.55mm wavelength. Photonic crystal structure is consisted of two dimensional (2D) air holes embedded in InP/InGaAsP material with an effective refractive index of 3.2634 which is arranged in a hexagonal lattice. The photonic band gap (PBG) of this structure is determined using t...
متن کاملElectromagnetic boundary and its realization with anisotropic metamaterial.
A set of boundary conditions requiring vanishing of the normal components of the D and B vectors at the boundary surface is introduced and labeled as that of DB boundary. Basic properties of the DB boundary are studied in this paper. Reflection of an arbitrary plane wave, incident with a complex propagation vector, is analyzed for the planar DB boundary. It is shown that waves polarized transve...
متن کامل